Metamath Proof Explorer


Theorem nfneld

Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfneld.1 φ_xA
nfneld.2 φ_xB
Assertion nfneld φxAB

Proof

Step Hyp Ref Expression
1 nfneld.1 φ_xA
2 nfneld.2 φ_xB
3 df-nel AB¬AB
4 1 2 nfeld φxAB
5 4 nfnd φx¬AB
6 3 5 nfxfrd φxAB