Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Negated equality and membership Negated membership nfneld  
				
		 
		
			
		 
		Description:   Bound-variable hypothesis builder for negated membership.  (Contributed by David Abernethy , 26-Jun-2011)   (Revised by Mario Carneiro , 7-Oct-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfneld.1 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐴  )  
					
						nfneld.2 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐵  )  
				
					Assertion 
					nfneld ⊢   ( 𝜑   →  Ⅎ 𝑥  𝐴   ∉  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfneld.1 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐴  )  
						
							2 
								
							 
							nfneld.2 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐵  )  
						
							3 
								
							 
							df-nel ⊢  ( 𝐴   ∉  𝐵   ↔  ¬  𝐴   ∈  𝐵  )  
						
							4 
								1  2 
							 
							nfeld ⊢  ( 𝜑   →  Ⅎ 𝑥  𝐴   ∈  𝐵  )  
						
							5 
								4 
							 
							nfnd ⊢  ( 𝜑   →  Ⅎ 𝑥  ¬  𝐴   ∈  𝐵  )  
						
							6 
								3  5 
							 
							nfxfrd ⊢  ( 𝜑   →  Ⅎ 𝑥  𝐴   ∉  𝐵  )