Metamath Proof Explorer


Theorem nfpo

Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses nfpo.r _xR
nfpo.a _xA
Assertion nfpo xRPoA

Proof

Step Hyp Ref Expression
1 nfpo.r _xR
2 nfpo.a _xA
3 df-po RPoAaAbAcA¬aRaaRbbRcaRc
4 nfcv _xa
5 4 1 4 nfbr xaRa
6 5 nfn x¬aRa
7 nfcv _xb
8 4 1 7 nfbr xaRb
9 nfcv _xc
10 7 1 9 nfbr xbRc
11 8 10 nfan xaRbbRc
12 4 1 9 nfbr xaRc
13 11 12 nfim xaRbbRcaRc
14 6 13 nfan x¬aRaaRbbRcaRc
15 2 14 nfralw xcA¬aRaaRbbRcaRc
16 2 15 nfralw xbAcA¬aRaaRbbRcaRc
17 2 16 nfralw xaAbAcA¬aRaaRbbRcaRc
18 3 17 nfxfr xRPoA