Metamath Proof Explorer


Theorem nfraldwOLD

Description: Obsolete version of nfraldw as of 24-Sep-2024. (Contributed by NM, 15-Feb-2013) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfraldwOLD.1 yφ
nfraldwOLD.2 φ_xA
nfraldwOLD.3 φxψ
Assertion nfraldwOLD φxyAψ

Proof

Step Hyp Ref Expression
1 nfraldwOLD.1 yφ
2 nfraldwOLD.2 φ_xA
3 nfraldwOLD.3 φxψ
4 df-ral yAψyyAψ
5 nfcvd φ_xy
6 5 2 nfeld φxyA
7 6 3 nfimd φxyAψ
8 1 7 nfald φxyyAψ
9 4 8 nfxfrd φxyAψ