Metamath Proof Explorer


Theorem nimnbi2

Description: If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypothesis nimnbi2.1 ¬ψφ
Assertion nimnbi2 ¬φψ

Proof

Step Hyp Ref Expression
1 nimnbi2.1 ¬ψφ
2 biimpr φψψφ
3 1 2 mto ¬φψ