Metamath Proof Explorer


Theorem nmhmcl

Description: A normed module homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis isnmhm2.1 N=SnormOpT
Assertion nmhmcl FSNMHomTNF

Proof

Step Hyp Ref Expression
1 isnmhm2.1 N=SnormOpT
2 nmhmnghm FSNMHomTFSNGHomT
3 1 nghmcl FSNGHomTNF
4 2 3 syl FSNMHomTNF