Description: A normed module homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isnmhm2.1 | |- N = ( S normOp T ) |
|
| Assertion | nmhmcl | |- ( F e. ( S NMHom T ) -> ( N ` F ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnmhm2.1 | |- N = ( S normOp T ) |
|
| 2 | nmhmnghm | |- ( F e. ( S NMHom T ) -> F e. ( S NGHom T ) ) |
|
| 3 | 1 | nghmcl | |- ( F e. ( S NGHom T ) -> ( N ` F ) e. RR ) |
| 4 | 2 3 | syl | |- ( F e. ( S NMHom T ) -> ( N ` F ) e. RR ) |