| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nmhm.1 |  |-  V = ( Base ` S ) | 
						
							| 2 |  | id |  |-  ( S e. NrmMod -> S e. NrmMod ) | 
						
							| 3 |  | nlmlmod |  |-  ( S e. NrmMod -> S e. LMod ) | 
						
							| 4 | 1 | idlmhm |  |-  ( S e. LMod -> ( _I |` V ) e. ( S LMHom S ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( S e. NrmMod -> ( _I |` V ) e. ( S LMHom S ) ) | 
						
							| 6 |  | nlmngp |  |-  ( S e. NrmMod -> S e. NrmGrp ) | 
						
							| 7 | 1 | idnghm |  |-  ( S e. NrmGrp -> ( _I |` V ) e. ( S NGHom S ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( S e. NrmMod -> ( _I |` V ) e. ( S NGHom S ) ) | 
						
							| 9 | 5 8 | jca |  |-  ( S e. NrmMod -> ( ( _I |` V ) e. ( S LMHom S ) /\ ( _I |` V ) e. ( S NGHom S ) ) ) | 
						
							| 10 |  | isnmhm |  |-  ( ( _I |` V ) e. ( S NMHom S ) <-> ( ( S e. NrmMod /\ S e. NrmMod ) /\ ( ( _I |` V ) e. ( S LMHom S ) /\ ( _I |` V ) e. ( S NGHom S ) ) ) ) | 
						
							| 11 | 2 2 9 10 | syl21anbrc |  |-  ( S e. NrmMod -> ( _I |` V ) e. ( S NMHom S ) ) |