| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nmhm.1 |  |-  V = ( Base ` S ) | 
						
							| 2 |  | 0nmhm.2 |  |-  .0. = ( 0g ` T ) | 
						
							| 3 |  | 0nmhm.f |  |-  F = ( Scalar ` S ) | 
						
							| 4 |  | 0nmhm.g |  |-  G = ( Scalar ` T ) | 
						
							| 5 |  | nlmlmod |  |-  ( S e. NrmMod -> S e. LMod ) | 
						
							| 6 |  | nlmlmod |  |-  ( T e. NrmMod -> T e. LMod ) | 
						
							| 7 |  | id |  |-  ( F = G -> F = G ) | 
						
							| 8 | 2 1 3 4 | 0lmhm |  |-  ( ( S e. LMod /\ T e. LMod /\ F = G ) -> ( V X. { .0. } ) e. ( S LMHom T ) ) | 
						
							| 9 | 5 6 7 8 | syl3an |  |-  ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( V X. { .0. } ) e. ( S LMHom T ) ) | 
						
							| 10 |  | nlmngp |  |-  ( S e. NrmMod -> S e. NrmGrp ) | 
						
							| 11 |  | nlmngp |  |-  ( T e. NrmMod -> T e. NrmGrp ) | 
						
							| 12 | 1 2 | 0nghm |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) | 
						
							| 13 | 10 11 12 | syl2an |  |-  ( ( S e. NrmMod /\ T e. NrmMod ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) | 
						
							| 15 |  | isnmhm |  |-  ( ( V X. { .0. } ) e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( ( V X. { .0. } ) e. ( S LMHom T ) /\ ( V X. { .0. } ) e. ( S NGHom T ) ) ) ) | 
						
							| 16 | 15 | baib |  |-  ( ( S e. NrmMod /\ T e. NrmMod ) -> ( ( V X. { .0. } ) e. ( S NMHom T ) <-> ( ( V X. { .0. } ) e. ( S LMHom T ) /\ ( V X. { .0. } ) e. ( S NGHom T ) ) ) ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( ( V X. { .0. } ) e. ( S NMHom T ) <-> ( ( V X. { .0. } ) e. ( S LMHom T ) /\ ( V X. { .0. } ) e. ( S NGHom T ) ) ) ) | 
						
							| 18 | 9 14 17 | mpbir2and |  |-  ( ( S e. NrmMod /\ T e. NrmMod /\ F = G ) -> ( V X. { .0. } ) e. ( S NMHom T ) ) |