| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nghm.2 |
|- V = ( Base ` S ) |
| 2 |
|
0nghm.3 |
|- .0. = ( 0g ` T ) |
| 3 |
|
eqid |
|- ( S normOp T ) = ( S normOp T ) |
| 4 |
3 1 2
|
nmo0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( ( S normOp T ) ` ( V X. { .0. } ) ) = 0 ) |
| 5 |
|
0re |
|- 0 e. RR |
| 6 |
4 5
|
eqeltrdi |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( ( S normOp T ) ` ( V X. { .0. } ) ) e. RR ) |
| 7 |
|
ngpgrp |
|- ( S e. NrmGrp -> S e. Grp ) |
| 8 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
| 9 |
2 1
|
0ghm |
|- ( ( S e. Grp /\ T e. Grp ) -> ( V X. { .0. } ) e. ( S GrpHom T ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( V X. { .0. } ) e. ( S GrpHom T ) ) |
| 11 |
3
|
isnghm2 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ ( V X. { .0. } ) e. ( S GrpHom T ) ) -> ( ( V X. { .0. } ) e. ( S NGHom T ) <-> ( ( S normOp T ) ` ( V X. { .0. } ) ) e. RR ) ) |
| 12 |
10 11
|
mpd3an3 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( ( V X. { .0. } ) e. ( S NGHom T ) <-> ( ( S normOp T ) ` ( V X. { .0. } ) ) e. RR ) ) |
| 13 |
6 12
|
mpbird |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( V X. { .0. } ) e. ( S NGHom T ) ) |