Metamath Proof Explorer


Theorem isnghm2

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1
|- N = ( S normOp T )
Assertion isnghm2
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) )

Proof

Step Hyp Ref Expression
1 nmofval.1
 |-  N = ( S normOp T )
2 1 isnghm
 |-  ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) )
3 2 baib
 |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( F e. ( S NGHom T ) <-> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) )
4 3 baibd
 |-  ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) )
5 4 3impa
 |-  ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) )