Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ghm.z | |- .0. = ( 0g ` N ) |
|
0ghm.b | |- B = ( Base ` M ) |
||
Assertion | 0ghm | |- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ghm.z | |- .0. = ( 0g ` N ) |
|
2 | 0ghm.b | |- B = ( Base ` M ) |
|
3 | grpmnd | |- ( M e. Grp -> M e. Mnd ) |
|
4 | grpmnd | |- ( N e. Grp -> N e. Mnd ) |
|
5 | 1 2 | 0mhm | |- ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) |
6 | 3 4 5 | syl2an | |- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) |
7 | ghmmhmb | |- ( ( M e. Grp /\ N e. Grp ) -> ( M GrpHom N ) = ( M MndHom N ) ) |
|
8 | 6 7 | eleqtrrd | |- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |