Metamath Proof Explorer


Theorem 0ghm

Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses 0ghm.z
|- .0. = ( 0g ` N )
0ghm.b
|- B = ( Base ` M )
Assertion 0ghm
|- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) )

Proof

Step Hyp Ref Expression
1 0ghm.z
 |-  .0. = ( 0g ` N )
2 0ghm.b
 |-  B = ( Base ` M )
3 grpmnd
 |-  ( M e. Grp -> M e. Mnd )
4 grpmnd
 |-  ( N e. Grp -> N e. Mnd )
5 1 2 0mhm
 |-  ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) )
6 3 4 5 syl2an
 |-  ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M MndHom N ) )
7 ghmmhmb
 |-  ( ( M e. Grp /\ N e. Grp ) -> ( M GrpHom N ) = ( M MndHom N ) )
8 6 7 eleqtrrd
 |-  ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) )