| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0mhm.z |
|- .0. = ( 0g ` N ) |
| 2 |
|
0mhm.b |
|- B = ( Base ` M ) |
| 3 |
|
id |
|- ( ( M e. Mnd /\ N e. Mnd ) -> ( M e. Mnd /\ N e. Mnd ) ) |
| 4 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
| 5 |
4 1
|
mndidcl |
|- ( N e. Mnd -> .0. e. ( Base ` N ) ) |
| 6 |
5
|
adantl |
|- ( ( M e. Mnd /\ N e. Mnd ) -> .0. e. ( Base ` N ) ) |
| 7 |
|
fconst6g |
|- ( .0. e. ( Base ` N ) -> ( B X. { .0. } ) : B --> ( Base ` N ) ) |
| 8 |
6 7
|
syl |
|- ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) : B --> ( Base ` N ) ) |
| 9 |
|
simpr |
|- ( ( M e. Mnd /\ N e. Mnd ) -> N e. Mnd ) |
| 10 |
|
eqid |
|- ( +g ` N ) = ( +g ` N ) |
| 11 |
4 10 1
|
mndlid |
|- ( ( N e. Mnd /\ .0. e. ( Base ` N ) ) -> ( .0. ( +g ` N ) .0. ) = .0. ) |
| 12 |
11
|
eqcomd |
|- ( ( N e. Mnd /\ .0. e. ( Base ` N ) ) -> .0. = ( .0. ( +g ` N ) .0. ) ) |
| 13 |
9 5 12
|
syl2anc2 |
|- ( ( M e. Mnd /\ N e. Mnd ) -> .0. = ( .0. ( +g ` N ) .0. ) ) |
| 14 |
13
|
adantr |
|- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> .0. = ( .0. ( +g ` N ) .0. ) ) |
| 15 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 16 |
2 15
|
mndcl |
|- ( ( M e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` M ) y ) e. B ) |
| 17 |
16
|
3expb |
|- ( ( M e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 18 |
17
|
adantlr |
|- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 19 |
1
|
fvexi |
|- .0. e. _V |
| 20 |
19
|
fvconst2 |
|- ( ( x ( +g ` M ) y ) e. B -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = .0. ) |
| 21 |
18 20
|
syl |
|- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = .0. ) |
| 22 |
19
|
fvconst2 |
|- ( x e. B -> ( ( B X. { .0. } ) ` x ) = .0. ) |
| 23 |
19
|
fvconst2 |
|- ( y e. B -> ( ( B X. { .0. } ) ` y ) = .0. ) |
| 24 |
22 23
|
oveqan12d |
|- ( ( x e. B /\ y e. B ) -> ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) = ( .0. ( +g ` N ) .0. ) ) |
| 25 |
24
|
adantl |
|- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) = ( .0. ( +g ` N ) .0. ) ) |
| 26 |
14 21 25
|
3eqtr4d |
|- ( ( ( M e. Mnd /\ N e. Mnd ) /\ ( x e. B /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) ) |
| 27 |
26
|
ralrimivva |
|- ( ( M e. Mnd /\ N e. Mnd ) -> A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) ) |
| 28 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 29 |
2 28
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 30 |
29
|
adantr |
|- ( ( M e. Mnd /\ N e. Mnd ) -> ( 0g ` M ) e. B ) |
| 31 |
19
|
fvconst2 |
|- ( ( 0g ` M ) e. B -> ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) |
| 32 |
30 31
|
syl |
|- ( ( M e. Mnd /\ N e. Mnd ) -> ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) |
| 33 |
8 27 32
|
3jca |
|- ( ( M e. Mnd /\ N e. Mnd ) -> ( ( B X. { .0. } ) : B --> ( Base ` N ) /\ A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) /\ ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) ) |
| 34 |
2 4 15 10 28 1
|
ismhm |
|- ( ( B X. { .0. } ) e. ( M MndHom N ) <-> ( ( M e. Mnd /\ N e. Mnd ) /\ ( ( B X. { .0. } ) : B --> ( Base ` N ) /\ A. x e. B A. y e. B ( ( B X. { .0. } ) ` ( x ( +g ` M ) y ) ) = ( ( ( B X. { .0. } ) ` x ) ( +g ` N ) ( ( B X. { .0. } ) ` y ) ) /\ ( ( B X. { .0. } ) ` ( 0g ` M ) ) = .0. ) ) ) |
| 35 |
3 33 34
|
sylanbrc |
|- ( ( M e. Mnd /\ N e. Mnd ) -> ( B X. { .0. } ) e. ( M MndHom N ) ) |