Metamath Proof Explorer


Theorem 0mhm

Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses 0mhm.z 0˙=0N
0mhm.b B=BaseM
Assertion 0mhm MMndNMndB×0˙MMndHomN

Proof

Step Hyp Ref Expression
1 0mhm.z 0˙=0N
2 0mhm.b B=BaseM
3 id MMndNMndMMndNMnd
4 eqid BaseN=BaseN
5 4 1 mndidcl NMnd0˙BaseN
6 5 adantl MMndNMnd0˙BaseN
7 fconst6g 0˙BaseNB×0˙:BBaseN
8 6 7 syl MMndNMndB×0˙:BBaseN
9 simpr MMndNMndNMnd
10 eqid +N=+N
11 4 10 1 mndlid NMnd0˙BaseN0˙+N0˙=0˙
12 11 eqcomd NMnd0˙BaseN0˙=0˙+N0˙
13 9 5 12 syl2anc2 MMndNMnd0˙=0˙+N0˙
14 13 adantr MMndNMndxByB0˙=0˙+N0˙
15 eqid +M=+M
16 2 15 mndcl MMndxByBx+MyB
17 16 3expb MMndxByBx+MyB
18 17 adantlr MMndNMndxByBx+MyB
19 1 fvexi 0˙V
20 19 fvconst2 x+MyBB×0˙x+My=0˙
21 18 20 syl MMndNMndxByBB×0˙x+My=0˙
22 19 fvconst2 xBB×0˙x=0˙
23 19 fvconst2 yBB×0˙y=0˙
24 22 23 oveqan12d xByBB×0˙x+NB×0˙y=0˙+N0˙
25 24 adantl MMndNMndxByBB×0˙x+NB×0˙y=0˙+N0˙
26 14 21 25 3eqtr4d MMndNMndxByBB×0˙x+My=B×0˙x+NB×0˙y
27 26 ralrimivva MMndNMndxByBB×0˙x+My=B×0˙x+NB×0˙y
28 eqid 0M=0M
29 2 28 mndidcl MMnd0MB
30 29 adantr MMndNMnd0MB
31 19 fvconst2 0MBB×0˙0M=0˙
32 30 31 syl MMndNMndB×0˙0M=0˙
33 8 27 32 3jca MMndNMndB×0˙:BBaseNxByBB×0˙x+My=B×0˙x+NB×0˙yB×0˙0M=0˙
34 2 4 15 10 28 1 ismhm B×0˙MMndHomNMMndNMndB×0˙:BBaseNxByBB×0˙x+My=B×0˙x+NB×0˙yB×0˙0M=0˙
35 3 33 34 sylanbrc MMndNMndB×0˙MMndHomN