Metamath Proof Explorer


Theorem resmhm

Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypothesis resmhm.u U=S𝑠X
Assertion resmhm FSMndHomTXSubMndSFXUMndHomT

Proof

Step Hyp Ref Expression
1 resmhm.u U=S𝑠X
2 mhmrcl2 FSMndHomTTMnd
3 1 submmnd XSubMndSUMnd
4 2 3 anim12ci FSMndHomTXSubMndSUMndTMnd
5 eqid BaseS=BaseS
6 eqid BaseT=BaseT
7 5 6 mhmf FSMndHomTF:BaseSBaseT
8 5 submss XSubMndSXBaseS
9 fssres F:BaseSBaseTXBaseSFX:XBaseT
10 7 8 9 syl2an FSMndHomTXSubMndSFX:XBaseT
11 8 adantl FSMndHomTXSubMndSXBaseS
12 1 5 ressbas2 XBaseSX=BaseU
13 11 12 syl FSMndHomTXSubMndSX=BaseU
14 13 feq2d FSMndHomTXSubMndSFX:XBaseTFX:BaseUBaseT
15 10 14 mpbid FSMndHomTXSubMndSFX:BaseUBaseT
16 simpll FSMndHomTXSubMndSxXyXFSMndHomT
17 8 ad2antlr FSMndHomTXSubMndSxXyXXBaseS
18 simprl FSMndHomTXSubMndSxXyXxX
19 17 18 sseldd FSMndHomTXSubMndSxXyXxBaseS
20 simprr FSMndHomTXSubMndSxXyXyX
21 17 20 sseldd FSMndHomTXSubMndSxXyXyBaseS
22 eqid +S=+S
23 eqid +T=+T
24 5 22 23 mhmlin FSMndHomTxBaseSyBaseSFx+Sy=Fx+TFy
25 16 19 21 24 syl3anc FSMndHomTXSubMndSxXyXFx+Sy=Fx+TFy
26 22 submcl XSubMndSxXyXx+SyX
27 26 3expb XSubMndSxXyXx+SyX
28 27 adantll FSMndHomTXSubMndSxXyXx+SyX
29 28 fvresd FSMndHomTXSubMndSxXyXFXx+Sy=Fx+Sy
30 fvres xXFXx=Fx
31 fvres yXFXy=Fy
32 30 31 oveqan12d xXyXFXx+TFXy=Fx+TFy
33 32 adantl FSMndHomTXSubMndSxXyXFXx+TFXy=Fx+TFy
34 25 29 33 3eqtr4d FSMndHomTXSubMndSxXyXFXx+Sy=FXx+TFXy
35 34 ralrimivva FSMndHomTXSubMndSxXyXFXx+Sy=FXx+TFXy
36 1 22 ressplusg XSubMndS+S=+U
37 36 adantl FSMndHomTXSubMndS+S=+U
38 37 oveqd FSMndHomTXSubMndSx+Sy=x+Uy
39 38 fveqeq2d FSMndHomTXSubMndSFXx+Sy=FXx+TFXyFXx+Uy=FXx+TFXy
40 13 39 raleqbidv FSMndHomTXSubMndSyXFXx+Sy=FXx+TFXyyBaseUFXx+Uy=FXx+TFXy
41 13 40 raleqbidv FSMndHomTXSubMndSxXyXFXx+Sy=FXx+TFXyxBaseUyBaseUFXx+Uy=FXx+TFXy
42 35 41 mpbid FSMndHomTXSubMndSxBaseUyBaseUFXx+Uy=FXx+TFXy
43 eqid 0S=0S
44 43 subm0cl XSubMndS0SX
45 44 adantl FSMndHomTXSubMndS0SX
46 45 fvresd FSMndHomTXSubMndSFX0S=F0S
47 1 43 subm0 XSubMndS0S=0U
48 47 adantl FSMndHomTXSubMndS0S=0U
49 48 fveq2d FSMndHomTXSubMndSFX0S=FX0U
50 eqid 0T=0T
51 43 50 mhm0 FSMndHomTF0S=0T
52 51 adantr FSMndHomTXSubMndSF0S=0T
53 46 49 52 3eqtr3d FSMndHomTXSubMndSFX0U=0T
54 15 42 53 3jca FSMndHomTXSubMndSFX:BaseUBaseTxBaseUyBaseUFXx+Uy=FXx+TFXyFX0U=0T
55 eqid BaseU=BaseU
56 eqid +U=+U
57 eqid 0U=0U
58 55 6 56 23 57 50 ismhm FXUMndHomTUMndTMndFX:BaseUBaseTxBaseUyBaseUFXx+Uy=FXx+TFXyFX0U=0T
59 4 54 58 sylanbrc FSMndHomTXSubMndSFXUMndHomT