Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resmhm.u | |
|
Assertion | resmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmhm.u | |
|
2 | mhmrcl2 | |
|
3 | 1 | submmnd | |
4 | 2 3 | anim12ci | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | mhmf | |
8 | 5 | submss | |
9 | fssres | |
|
10 | 7 8 9 | syl2an | |
11 | 8 | adantl | |
12 | 1 5 | ressbas2 | |
13 | 11 12 | syl | |
14 | 13 | feq2d | |
15 | 10 14 | mpbid | |
16 | simpll | |
|
17 | 8 | ad2antlr | |
18 | simprl | |
|
19 | 17 18 | sseldd | |
20 | simprr | |
|
21 | 17 20 | sseldd | |
22 | eqid | |
|
23 | eqid | |
|
24 | 5 22 23 | mhmlin | |
25 | 16 19 21 24 | syl3anc | |
26 | 22 | submcl | |
27 | 26 | 3expb | |
28 | 27 | adantll | |
29 | 28 | fvresd | |
30 | fvres | |
|
31 | fvres | |
|
32 | 30 31 | oveqan12d | |
33 | 32 | adantl | |
34 | 25 29 33 | 3eqtr4d | |
35 | 34 | ralrimivva | |
36 | 1 22 | ressplusg | |
37 | 36 | adantl | |
38 | 37 | oveqd | |
39 | 38 | fveqeq2d | |
40 | 13 39 | raleqbidv | |
41 | 13 40 | raleqbidv | |
42 | 35 41 | mpbid | |
43 | eqid | |
|
44 | 43 | subm0cl | |
45 | 44 | adantl | |
46 | 45 | fvresd | |
47 | 1 43 | subm0 | |
48 | 47 | adantl | |
49 | 48 | fveq2d | |
50 | eqid | |
|
51 | 43 50 | mhm0 | |
52 | 51 | adantr | |
53 | 46 49 52 | 3eqtr3d | |
54 | 15 42 53 | 3jca | |
55 | eqid | |
|
56 | eqid | |
|
57 | eqid | |
|
58 | 55 6 56 23 57 50 | ismhm | |
59 | 4 54 58 | sylanbrc | |