Metamath Proof Explorer


Theorem resmhm

Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypothesis resmhm.u 𝑈 = ( 𝑆s 𝑋 )
Assertion resmhm ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) )

Proof

Step Hyp Ref Expression
1 resmhm.u 𝑈 = ( 𝑆s 𝑋 )
2 mhmrcl2 ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑇 ∈ Mnd )
3 1 submmnd ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → 𝑈 ∈ Mnd )
4 2 3 anim12ci ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd ) )
5 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
6 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
7 5 6 mhmf ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) )
8 5 submss ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) )
9 fssres ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) )
10 7 8 9 syl2an ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) )
11 8 adantl ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) )
12 1 5 ressbas2 ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑈 ) )
13 11 12 syl ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → 𝑋 = ( Base ‘ 𝑈 ) )
14 13 feq2d ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ↔ ( 𝐹𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) )
15 10 14 mpbid ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) )
16 simpll ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) )
17 8 ad2antlr ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) )
18 simprl ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑥𝑋 )
19 17 18 sseldd ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
20 simprr ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑦𝑋 )
21 17 20 sseldd ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) )
22 eqid ( +g𝑆 ) = ( +g𝑆 )
23 eqid ( +g𝑇 ) = ( +g𝑇 )
24 5 22 23 mhmlin ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
25 16 19 21 24 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
26 22 submcl ( ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ 𝑋 )
27 26 3expb ( ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ 𝑋 )
28 27 adantll ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ 𝑋 )
29 28 fvresd ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) )
30 fvres ( 𝑥𝑋 → ( ( 𝐹𝑋 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
31 fvres ( 𝑦𝑋 → ( ( 𝐹𝑋 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
32 30 31 oveqan12d ( ( 𝑥𝑋𝑦𝑋 ) → ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
33 32 adantl ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
34 25 29 33 3eqtr4d ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) )
35 34 ralrimivva ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) )
36 1 22 ressplusg ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( +g𝑆 ) = ( +g𝑈 ) )
37 36 adantl ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( +g𝑆 ) = ( +g𝑈 ) )
38 37 oveqd ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( 𝑥 ( +g𝑈 ) 𝑦 ) )
39 38 fveqeq2d ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ↔ ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑈 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ) )
40 13 39 raleqbidv ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ∀ 𝑦𝑋 ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑈 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ) )
41 13 40 raleqbidv ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑈 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ) )
42 35 41 mpbid ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑈 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) )
43 eqid ( 0g𝑆 ) = ( 0g𝑆 )
44 43 subm0cl ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( 0g𝑆 ) ∈ 𝑋 )
45 44 adantl ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 0g𝑆 ) ∈ 𝑋 )
46 45 fvresd ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹𝑋 ) ‘ ( 0g𝑆 ) ) = ( 𝐹 ‘ ( 0g𝑆 ) ) )
47 1 43 subm0 ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( 0g𝑆 ) = ( 0g𝑈 ) )
48 47 adantl ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 0g𝑆 ) = ( 0g𝑈 ) )
49 48 fveq2d ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹𝑋 ) ‘ ( 0g𝑆 ) ) = ( ( 𝐹𝑋 ) ‘ ( 0g𝑈 ) ) )
50 eqid ( 0g𝑇 ) = ( 0g𝑇 )
51 43 50 mhm0 ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 ‘ ( 0g𝑆 ) ) = ( 0g𝑇 ) )
52 51 adantr ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g𝑆 ) ) = ( 0g𝑇 ) )
53 46 49 52 3eqtr3d ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹𝑋 ) ‘ ( 0g𝑈 ) ) = ( 0g𝑇 ) )
54 15 42 53 3jca ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑈 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹𝑋 ) ‘ ( 0g𝑈 ) ) = ( 0g𝑇 ) ) )
55 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
56 eqid ( +g𝑈 ) = ( +g𝑈 )
57 eqid ( 0g𝑈 ) = ( 0g𝑈 )
58 55 6 56 23 57 50 ismhm ( ( 𝐹𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) ↔ ( ( 𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( ( 𝐹𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹𝑋 ) ‘ ( 𝑥 ( +g𝑈 ) 𝑦 ) ) = ( ( ( 𝐹𝑋 ) ‘ 𝑥 ) ( +g𝑇 ) ( ( 𝐹𝑋 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹𝑋 ) ‘ ( 0g𝑈 ) ) = ( 0g𝑇 ) ) ) )
59 4 54 58 sylanbrc ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) )