Step |
Hyp |
Ref |
Expression |
1 |
|
resmhm.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) |
2 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑇 ∈ Mnd ) |
3 |
1
|
submmnd |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → 𝑈 ∈ Mnd ) |
4 |
2 3
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
7 |
5 6
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
8 |
5
|
submss |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
9 |
|
fssres |
⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
11 |
8
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
12 |
1 5
|
ressbas2 |
⊢ ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
14 |
13
|
feq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ↔ ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
15 |
10 14
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) |
16 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
17 |
8
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
18 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
19 |
17 18
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
20 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
21 |
17 20
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
23 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
24 |
5 22 23
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
16 19 21 24
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
26 |
22
|
submcl |
⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
27 |
26
|
3expb |
⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
28 |
27
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
29 |
28
|
fvresd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
30 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
31 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
32 |
30 31
|
oveqan12d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
34 |
25 29 33
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
35 |
34
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
36 |
1 22
|
ressplusg |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
38 |
37
|
oveqd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
39 |
38
|
fveqeq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
40 |
13 39
|
raleqbidv |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
41 |
13 40
|
raleqbidv |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
42 |
35 41
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
43 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
44 |
43
|
subm0cl |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) ∈ 𝑋 ) |
45 |
44
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝑋 ) |
46 |
45
|
fvresd |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
47 |
1 43
|
subm0 |
⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑆 ) ) = ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
51 |
43 50
|
mhm0 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
53 |
46 49 52
|
3eqtr3d |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑇 ) ) |
54 |
15 42 53
|
3jca |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑇 ) ) ) |
55 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
56 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
57 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
58 |
55 6 56 23 57 50
|
ismhm |
⊢ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) ↔ ( ( 𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
59 |
4 54 58
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) ) |