Step |
Hyp |
Ref |
Expression |
1 |
|
subm0cl.z |
⊢ 0 = ( 0g ‘ 𝑀 ) |
2 |
|
submrcl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
4 |
|
eqid |
⊢ ( 𝑀 ↾s 𝑆 ) = ( 𝑀 ↾s 𝑆 ) |
5 |
3 1 4
|
issubm2 |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 0 ∈ 𝑆 ∧ ( 𝑀 ↾s 𝑆 ) ∈ Mnd ) ) ) |
6 |
2 5
|
syl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 0 ∈ 𝑆 ∧ ( 𝑀 ↾s 𝑆 ) ∈ Mnd ) ) ) |
7 |
6
|
ibi |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 0 ∈ 𝑆 ∧ ( 𝑀 ↾s 𝑆 ) ∈ Mnd ) ) |
8 |
7
|
simp2d |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0 ∈ 𝑆 ) |