| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subm0cl.z |
|- .0. = ( 0g ` M ) |
| 2 |
|
submrcl |
|- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
| 3 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 4 |
|
eqid |
|- ( M |`s S ) = ( M |`s S ) |
| 5 |
3 1 4
|
issubm2 |
|- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ .0. e. S /\ ( M |`s S ) e. Mnd ) ) ) |
| 6 |
2 5
|
syl |
|- ( S e. ( SubMnd ` M ) -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ .0. e. S /\ ( M |`s S ) e. Mnd ) ) ) |
| 7 |
6
|
ibi |
|- ( S e. ( SubMnd ` M ) -> ( S C_ ( Base ` M ) /\ .0. e. S /\ ( M |`s S ) e. Mnd ) ) |
| 8 |
7
|
simp2d |
|- ( S e. ( SubMnd ` M ) -> .0. e. S ) |