Metamath Proof Explorer


Theorem mhmf

Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses mhmf.b B=BaseS
mhmf.c C=BaseT
Assertion mhmf FSMndHomTF:BC

Proof

Step Hyp Ref Expression
1 mhmf.b B=BaseS
2 mhmf.c C=BaseT
3 eqid +S=+S
4 eqid +T=+T
5 eqid 0S=0S
6 eqid 0T=0T
7 1 2 3 4 5 6 ismhm FSMndHomTSMndTMndF:BCxByBFx+Sy=Fx+TFyF0S=0T
8 7 simprbi FSMndHomTF:BCxByBFx+Sy=Fx+TFyF0S=0T
9 8 simp1d FSMndHomTF:BC