| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0lmhm.z |
|- .0. = ( 0g ` N ) |
| 2 |
|
0lmhm.b |
|- B = ( Base ` M ) |
| 3 |
|
0lmhm.s |
|- S = ( Scalar ` M ) |
| 4 |
|
0lmhm.t |
|- T = ( Scalar ` N ) |
| 5 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
| 6 |
|
eqid |
|- ( .s ` N ) = ( .s ` N ) |
| 7 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 8 |
|
simp1 |
|- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> M e. LMod ) |
| 9 |
|
simp2 |
|- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> N e. LMod ) |
| 10 |
|
simp3 |
|- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> S = T ) |
| 11 |
10
|
eqcomd |
|- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> T = S ) |
| 12 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
| 13 |
|
lmodgrp |
|- ( N e. LMod -> N e. Grp ) |
| 14 |
1 2
|
0ghm |
|- ( ( M e. Grp /\ N e. Grp ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
| 15 |
12 13 14
|
syl2an |
|- ( ( M e. LMod /\ N e. LMod ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
| 16 |
15
|
3adant3 |
|- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M GrpHom N ) ) |
| 17 |
|
simpl2 |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> N e. LMod ) |
| 18 |
|
simprl |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> x e. ( Base ` S ) ) |
| 19 |
|
simpl3 |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> S = T ) |
| 20 |
19
|
fveq2d |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( Base ` S ) = ( Base ` T ) ) |
| 21 |
18 20
|
eleqtrd |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> x e. ( Base ` T ) ) |
| 22 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 23 |
4 6 22 1
|
lmodvs0 |
|- ( ( N e. LMod /\ x e. ( Base ` T ) ) -> ( x ( .s ` N ) .0. ) = .0. ) |
| 24 |
17 21 23
|
syl2anc |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` N ) .0. ) = .0. ) |
| 25 |
1
|
fvexi |
|- .0. e. _V |
| 26 |
25
|
fvconst2 |
|- ( y e. B -> ( ( B X. { .0. } ) ` y ) = .0. ) |
| 27 |
26
|
oveq2d |
|- ( y e. B -> ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) = ( x ( .s ` N ) .0. ) ) |
| 28 |
27
|
ad2antll |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) = ( x ( .s ` N ) .0. ) ) |
| 29 |
|
simpl1 |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> M e. LMod ) |
| 30 |
|
simprr |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> y e. B ) |
| 31 |
2 3 5 7
|
lmodvscl |
|- ( ( M e. LMod /\ x e. ( Base ` S ) /\ y e. B ) -> ( x ( .s ` M ) y ) e. B ) |
| 32 |
29 18 30 31
|
syl3anc |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( x ( .s ` M ) y ) e. B ) |
| 33 |
25
|
fvconst2 |
|- ( ( x ( .s ` M ) y ) e. B -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = .0. ) |
| 34 |
32 33
|
syl |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = .0. ) |
| 35 |
24 28 34
|
3eqtr4rd |
|- ( ( ( M e. LMod /\ N e. LMod /\ S = T ) /\ ( x e. ( Base ` S ) /\ y e. B ) ) -> ( ( B X. { .0. } ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( ( B X. { .0. } ) ` y ) ) ) |
| 36 |
2 5 6 3 4 7 8 9 11 16 35
|
islmhmd |
|- ( ( M e. LMod /\ N e. LMod /\ S = T ) -> ( B X. { .0. } ) e. ( M LMHom N ) ) |