Metamath Proof Explorer


Theorem idnmhm

Description: The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypothesis 0nmhm.1 𝑉 = ( Base ‘ 𝑆 )
Assertion idnmhm ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 NMHom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 0nmhm.1 𝑉 = ( Base ‘ 𝑆 )
2 id ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmMod )
3 nlmlmod ( 𝑆 ∈ NrmMod → 𝑆 ∈ LMod )
4 1 idlmhm ( 𝑆 ∈ LMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) )
5 3 4 syl ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) )
6 nlmngp ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp )
7 1 idnghm ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) )
8 6 7 syl ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) )
9 5 8 jca ( 𝑆 ∈ NrmMod → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) )
10 isnmhm ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NMHom 𝑆 ) ↔ ( ( 𝑆 ∈ NrmMod ∧ 𝑆 ∈ NrmMod ) ∧ ( ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) ) )
11 2 2 9 10 syl21anbrc ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 NMHom 𝑆 ) )