| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nmhm.1 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 2 |
|
id |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmMod ) |
| 3 |
|
nlmlmod |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ LMod ) |
| 4 |
1
|
idlmhm |
⊢ ( 𝑆 ∈ LMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) ) |
| 6 |
|
nlmngp |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) |
| 7 |
1
|
idnghm |
⊢ ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) |
| 9 |
5 8
|
jca |
⊢ ( 𝑆 ∈ NrmMod → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) ) |
| 10 |
|
isnmhm |
⊢ ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NMHom 𝑆 ) ↔ ( ( 𝑆 ∈ NrmMod ∧ 𝑆 ∈ NrmMod ) ∧ ( ( I ↾ 𝑉 ) ∈ ( 𝑆 LMHom 𝑆 ) ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) ) ) |
| 11 |
2 2 9 10
|
syl21anbrc |
⊢ ( 𝑆 ∈ NrmMod → ( I ↾ 𝑉 ) ∈ ( 𝑆 NMHom 𝑆 ) ) |