| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idnghm.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 2 |
|
eqid |
⊢ ( 𝑆 normOp 𝑆 ) = ( 𝑆 normOp 𝑆 ) |
| 3 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 4 |
2 1 3
|
nmoid |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = 1 ) |
| 5 |
|
1re |
⊢ 1 ∈ ℝ |
| 6 |
4 5
|
eqeltrdi |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) |
| 7 |
|
eleq2 |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( 𝑥 ∈ { ( 0g ‘ 𝑆 ) } ↔ 𝑥 ∈ 𝑉 ) ) |
| 8 |
7
|
biimpar |
⊢ ( ( { ( 0g ‘ 𝑆 ) } = 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ { ( 0g ‘ 𝑆 ) } ) |
| 9 |
|
elsni |
⊢ ( 𝑥 ∈ { ( 0g ‘ 𝑆 ) } → 𝑥 = ( 0g ‘ 𝑆 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( { ( 0g ‘ 𝑆 ) } = 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 = ( 0g ‘ 𝑆 ) ) |
| 11 |
10
|
mpteq2dva |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( 𝑥 ∈ 𝑉 ↦ 𝑥 ) = ( 𝑥 ∈ 𝑉 ↦ ( 0g ‘ 𝑆 ) ) ) |
| 12 |
|
mptresid |
⊢ ( I ↾ 𝑉 ) = ( 𝑥 ∈ 𝑉 ↦ 𝑥 ) |
| 13 |
|
fconstmpt |
⊢ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) = ( 𝑥 ∈ 𝑉 ↦ ( 0g ‘ 𝑆 ) ) |
| 14 |
11 12 13
|
3eqtr4g |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( I ↾ 𝑉 ) = ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) |
| 15 |
14
|
fveq2d |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) ) |
| 16 |
2 1 3
|
nmo0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) = 0 ) |
| 17 |
16
|
anidms |
⊢ ( 𝑆 ∈ NrmGrp → ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) = 0 ) |
| 18 |
15 17
|
sylan9eqr |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } = 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = 0 ) |
| 19 |
|
0re |
⊢ 0 ∈ ℝ |
| 20 |
18 19
|
eqeltrdi |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } = 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) |
| 21 |
|
ngpgrp |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp ) |
| 22 |
1 3
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝑆 ∈ NrmGrp → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
| 24 |
23
|
snssd |
⊢ ( 𝑆 ∈ NrmGrp → { ( 0g ‘ 𝑆 ) } ⊆ 𝑉 ) |
| 25 |
|
sspss |
⊢ ( { ( 0g ‘ 𝑆 ) } ⊆ 𝑉 ↔ ( { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ∨ { ( 0g ‘ 𝑆 ) } = 𝑉 ) ) |
| 26 |
24 25
|
sylib |
⊢ ( 𝑆 ∈ NrmGrp → ( { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ∨ { ( 0g ‘ 𝑆 ) } = 𝑉 ) ) |
| 27 |
6 20 26
|
mpjaodan |
⊢ ( 𝑆 ∈ NrmGrp → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) |
| 28 |
|
id |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp ) |
| 29 |
1
|
idghm |
⊢ ( 𝑆 ∈ Grp → ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) |
| 30 |
21 29
|
syl |
⊢ ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) |
| 31 |
2
|
isnghm2 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ↔ ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) ) |
| 32 |
28 30 31
|
mpd3an23 |
⊢ ( 𝑆 ∈ NrmGrp → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ↔ ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) ) |
| 33 |
27 32
|
mpbird |
⊢ ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) |