| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmo0.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmo0.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 3 |
|
nmo0.3 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 4 |
|
eqid |
⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 7 |
|
simpl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑆 ∈ NrmGrp ) |
| 8 |
|
simpr |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑇 ∈ NrmGrp ) |
| 9 |
|
ngpgrp |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp ) |
| 10 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
| 11 |
3 2
|
0ghm |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑉 × { 0 } ) ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 12 |
9 10 11
|
syl2an |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑉 × { 0 } ) ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 13 |
|
0red |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 0 ∈ ℝ ) |
| 14 |
|
0le0 |
⊢ 0 ≤ 0 |
| 15 |
14
|
a1i |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 0 ≤ 0 ) |
| 16 |
3
|
fvexi |
⊢ 0 ∈ V |
| 17 |
16
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑉 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 18 |
17
|
ad2antrl |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑉 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝑉 × { 0 } ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 0 ) ) |
| 20 |
5 3
|
nm0 |
⊢ ( 𝑇 ∈ NrmGrp → ( ( norm ‘ 𝑇 ) ‘ 0 ) = 0 ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ 0 ) = 0 ) |
| 22 |
19 21
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝑉 × { 0 } ) ‘ 𝑥 ) ) = 0 ) |
| 23 |
2 4
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
| 24 |
23
|
ad2ant2r |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℂ ) |
| 26 |
25
|
mul02d |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 0 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) = 0 ) |
| 27 |
14 26
|
breqtrrid |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 0 ≤ ( 0 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 28 |
22 27
|
eqbrtrd |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝑉 × { 0 } ) ‘ 𝑥 ) ) ≤ ( 0 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 29 |
1 2 4 5 6 7 8 12 13 15 28
|
nmolb2d |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ≤ 0 ) |
| 30 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ ( 𝑉 × { 0 } ) ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ) |
| 31 |
12 30
|
mpd3an3 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 0 ≤ ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ) |
| 32 |
1
|
nmocl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ ( 𝑉 × { 0 } ) ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ∈ ℝ* ) |
| 33 |
12 32
|
mpd3an3 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ∈ ℝ* ) |
| 34 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 35 |
|
xrletri3 |
⊢ ( ( ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) = 0 ↔ ( ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ≤ 0 ∧ 0 ≤ ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ) ) ) |
| 36 |
33 34 35
|
sylancl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) = 0 ↔ ( ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ≤ 0 ∧ 0 ≤ ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) ) ) ) |
| 37 |
29 31 36
|
mpbir2and |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) = 0 ) |