| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrlttri3 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  =  𝐵  ↔  ( ¬  𝐴  <  𝐵  ∧  ¬  𝐵  <  𝐴 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							biancomd | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  =  𝐵  ↔  ( ¬  𝐵  <  𝐴  ∧  ¬  𝐴  <  𝐵 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							xrlenlt | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ≤  𝐵  ↔  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							xrlenlt | 
							⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							anbi12d | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐴 )  ↔  ( ¬  𝐵  <  𝐴  ∧  ¬  𝐴  <  𝐵 ) ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							bitr4d | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐴 ) ) )  |