| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrlttri3 | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							biancomd | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. B < A /\ -. A < B ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							xrlenlt | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							xrlenlt | 
							 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ancoms | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							anbi12d | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B <_ A ) <-> ( -. B < A /\ -. A < B ) ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							bitr4d | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) )  |