Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrletrid.1 | |- ( ph -> A e. RR* ) |
|
| xrletrid.2 | |- ( ph -> B e. RR* ) |
||
| xrletrid.3 | |- ( ph -> A <_ B ) |
||
| xrletrid.4 | |- ( ph -> B <_ A ) |
||
| Assertion | xrletrid | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrid.1 | |- ( ph -> A e. RR* ) |
|
| 2 | xrletrid.2 | |- ( ph -> B e. RR* ) |
|
| 3 | xrletrid.3 | |- ( ph -> A <_ B ) |
|
| 4 | xrletrid.4 | |- ( ph -> B <_ A ) |
|
| 5 | xrletri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
|
| 6 | 1 2 5 | syl2anc | |- ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 7 | 3 4 6 | mpbir2and | |- ( ph -> A = B ) |