Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrletrid.1 | |- ( ph -> A e. RR* ) |
|
xrletrid.2 | |- ( ph -> B e. RR* ) |
||
xrletrid.3 | |- ( ph -> A <_ B ) |
||
xrletrid.4 | |- ( ph -> B <_ A ) |
||
Assertion | xrletrid | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrid.1 | |- ( ph -> A e. RR* ) |
|
2 | xrletrid.2 | |- ( ph -> B e. RR* ) |
|
3 | xrletrid.3 | |- ( ph -> A <_ B ) |
|
4 | xrletrid.4 | |- ( ph -> B <_ A ) |
|
5 | xrletri3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
|
6 | 1 2 5 | syl2anc | |- ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
7 | 3 4 6 | mpbir2and | |- ( ph -> A = B ) |