Metamath Proof Explorer


Theorem xrletrid

Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrletrid.1
|- ( ph -> A e. RR* )
xrletrid.2
|- ( ph -> B e. RR* )
xrletrid.3
|- ( ph -> A <_ B )
xrletrid.4
|- ( ph -> B <_ A )
Assertion xrletrid
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 xrletrid.1
 |-  ( ph -> A e. RR* )
2 xrletrid.2
 |-  ( ph -> B e. RR* )
3 xrletrid.3
 |-  ( ph -> A <_ B )
4 xrletrid.4
 |-  ( ph -> B <_ A )
5 xrletri3
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) )
7 3 4 6 mpbir2and
 |-  ( ph -> A = B )