Metamath Proof Explorer


Theorem 0xr

Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Assertion 0xr 0 ∈ ℝ*

Proof

Step Hyp Ref Expression
1 ressxr ℝ ⊆ ℝ*
2 0re 0 ∈ ℝ
3 1 2 sselii 0 ∈ ℝ*