Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | idnghm.2 | |
|
Assertion | idnghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idnghm.2 | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 1 3 | nmoid | |
5 | 1re | |
|
6 | 4 5 | eqeltrdi | |
7 | eleq2 | |
|
8 | 7 | biimpar | |
9 | elsni | |
|
10 | 8 9 | syl | |
11 | 10 | mpteq2dva | |
12 | mptresid | |
|
13 | fconstmpt | |
|
14 | 11 12 13 | 3eqtr4g | |
15 | 14 | fveq2d | |
16 | 2 1 3 | nmo0 | |
17 | 16 | anidms | |
18 | 15 17 | sylan9eqr | |
19 | 0re | |
|
20 | 18 19 | eqeltrdi | |
21 | ngpgrp | |
|
22 | 1 3 | grpidcl | |
23 | 21 22 | syl | |
24 | 23 | snssd | |
25 | sspss | |
|
26 | 24 25 | sylib | |
27 | 6 20 26 | mpjaodan | |
28 | id | |
|
29 | 1 | idghm | |
30 | 21 29 | syl | |
31 | 2 | isnghm2 | |
32 | 28 30 31 | mpd3an23 | |
33 | 27 32 | mpbird | |