Metamath Proof Explorer


Theorem idnghm

Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis idnghm.2 V=BaseS
Assertion idnghm SNrmGrpIVSNGHomS

Proof

Step Hyp Ref Expression
1 idnghm.2 V=BaseS
2 eqid SnormOpS=SnormOpS
3 eqid 0S=0S
4 2 1 3 nmoid SNrmGrp0SVSnormOpSIV=1
5 1re 1
6 4 5 eqeltrdi SNrmGrp0SVSnormOpSIV
7 eleq2 0S=Vx0SxV
8 7 biimpar 0S=VxVx0S
9 elsni x0Sx=0S
10 8 9 syl 0S=VxVx=0S
11 10 mpteq2dva 0S=VxVx=xV0S
12 mptresid IV=xVx
13 fconstmpt V×0S=xV0S
14 11 12 13 3eqtr4g 0S=VIV=V×0S
15 14 fveq2d 0S=VSnormOpSIV=SnormOpSV×0S
16 2 1 3 nmo0 SNrmGrpSNrmGrpSnormOpSV×0S=0
17 16 anidms SNrmGrpSnormOpSV×0S=0
18 15 17 sylan9eqr SNrmGrp0S=VSnormOpSIV=0
19 0re 0
20 18 19 eqeltrdi SNrmGrp0S=VSnormOpSIV
21 ngpgrp SNrmGrpSGrp
22 1 3 grpidcl SGrp0SV
23 21 22 syl SNrmGrp0SV
24 23 snssd SNrmGrp0SV
25 sspss 0SV0SV0S=V
26 24 25 sylib SNrmGrp0SV0S=V
27 6 20 26 mpjaodan SNrmGrpSnormOpSIV
28 id SNrmGrpSNrmGrp
29 1 idghm SGrpIVSGrpHomS
30 21 29 syl SNrmGrpIVSGrpHomS
31 2 isnghm2 SNrmGrpSNrmGrpIVSGrpHomSIVSNGHomSSnormOpSIV
32 28 30 31 mpd3an23 SNrmGrpIVSNGHomSSnormOpSIV
33 27 32 mpbird SNrmGrpIVSNGHomS