Description: A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | |- N = ( S normOp T ) |
|
| Assertion | nghmcl | |- ( F e. ( S NGHom T ) -> ( N ` F ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | 1 | isnghm | |- ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) |
| 3 | 2 | simprbi | |- ( F e. ( S NGHom T ) -> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) |
| 4 | 3 | simprd | |- ( F e. ( S NGHom T ) -> ( N ` F ) e. RR ) |