Metamath Proof Explorer


Theorem nn2m

Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nn2m Aω2𝑜𝑜A=A+𝑜A

Proof

Step Hyp Ref Expression
1 2onn 2𝑜ω
2 nnmcom 2𝑜ωAω2𝑜𝑜A=A𝑜2𝑜
3 1 2 mpan Aω2𝑜𝑜A=A𝑜2𝑜
4 nnm2 AωA𝑜2𝑜=A+𝑜A
5 3 4 eqtrd Aω2𝑜𝑜A=A+𝑜A