Metamath Proof Explorer


Theorem nnaddcld

Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nnge1d.1 φA
nnmulcld.2 φB
Assertion nnaddcld φA+B

Proof

Step Hyp Ref Expression
1 nnge1d.1 φA
2 nnmulcld.2 φB
3 nnaddcl ABA+B
4 1 2 3 syl2anc φA+B