Metamath Proof Explorer


Theorem nnzd

Description: A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis nnzd.1 φA
Assertion nnzd φA

Proof

Step Hyp Ref Expression
1 nnzd.1 φA
2 1 nnnn0d φA0
3 2 nn0zd φA