Metamath Proof Explorer


Theorem notbinot1

Description: Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion notbinot1 ¬¬φψφψ

Proof

Step Hyp Ref Expression
1 nbbn ¬φψ¬φψ
2 1 bicomi ¬φψ¬φψ
3 2 con1bii ¬¬φψφψ