Description: Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | notbinot1 | ⊢ ( ¬ ( ¬ 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbbn | ⊢ ( ( ¬ 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | bicomi | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ 𝜓 ) ) |
3 | 2 | con1bii | ⊢ ( ¬ ( ¬ 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ 𝜓 ) ) |