Metamath Proof Explorer


Theorem notbinot1

Description: Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion notbinot1 ( ¬ ( ¬ 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 nbbn ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 1 bicomi ( ¬ ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
3 2 con1bii ( ¬ ( ¬ 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) )