Metamath Proof Explorer


Theorem nrelv

Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022)

Ref Expression
Assertion nrelv ¬ Rel V

Proof

Step Hyp Ref Expression
1 0ex V
2 0nelxp ¬ V × V
3 nelss V ¬ V × V ¬ V V × V
4 1 2 3 mp2an ¬ V V × V
5 df-rel Rel V V V × V
6 4 5 mtbir ¬ Rel V