Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
nrelv
Next ⟩
relsng
Metamath Proof Explorer
Ascii
Unicode
Theorem
nrelv
Description:
The universal class is not a relation.
(Contributed by
Thierry Arnoux
, 23-Jan-2022)
Ref
Expression
Assertion
nrelv
⊢
¬
Rel
⁡
V
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅
∈
V
2
0nelxp
⊢
¬
∅
∈
V
×
V
3
nelss
⊢
∅
∈
V
∧
¬
∅
∈
V
×
V
→
¬
V
⊆
V
×
V
4
1
2
3
mp2an
⊢
¬
V
⊆
V
×
V
5
df-rel
⊢
Rel
⁡
V
↔
V
⊆
V
×
V
6
4
5
mtbir
⊢
¬
Rel
⁡
V