Metamath Proof Explorer


Theorem nsgsubg

Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Assertion nsgsubg SNrmSGrpGSSubGrpG

Proof

Step Hyp Ref Expression
1 eqid BaseG=BaseG
2 eqid +G=+G
3 1 2 isnsg SNrmSGrpGSSubGrpGxBaseGyBaseGx+GySy+GxS
4 3 simplbi SNrmSGrpGSSubGrpG