Metamath Proof Explorer


Theorem nummac

Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numma.1 T0
numma.2 A0
numma.3 B0
numma.4 C0
numma.5 D0
numma.6 M=TA+B
numma.7 N=TC+D
nummac.8 P0
nummac.9 F0
nummac.10 G0
nummac.11 AP+C+G=E
nummac.12 BP+D=TG+F
Assertion nummac MP+N=TE+F

Proof

Step Hyp Ref Expression
1 numma.1 T0
2 numma.2 A0
3 numma.3 B0
4 numma.4 C0
5 numma.5 D0
6 numma.6 M=TA+B
7 numma.7 N=TC+D
8 nummac.8 P0
9 nummac.9 F0
10 nummac.10 G0
11 nummac.11 AP+C+G=E
12 nummac.12 BP+D=TG+F
13 1 nn0cni T
14 2 nn0cni A
15 8 nn0cni P
16 14 15 mulcli AP
17 4 nn0cni C
18 10 nn0cni G
19 16 17 18 addassi AP+C+G=AP+C+G
20 19 11 eqtri AP+C+G=E
21 16 17 addcli AP+C
22 21 18 addcli AP+C+G
23 20 22 eqeltrri E
24 13 23 18 subdii TEG=TETG
25 24 oveq1i TEG+TG+F=TETG+TG+F
26 23 18 21 subadd2i EG=AP+CAP+C+G=E
27 20 26 mpbir EG=AP+C
28 27 eqcomi AP+C=EG
29 1 2 3 4 5 6 7 8 28 12 numma MP+N=TEG+TG+F
30 13 23 mulcli TE
31 13 18 mulcli TG
32 npcan TETGTE-TG+TG=TE
33 30 31 32 mp2an TE-TG+TG=TE
34 33 oveq1i TETG+TG+F=TE+F
35 30 31 subcli TETG
36 9 nn0cni F
37 35 31 36 addassi TETG+TG+F=TETG+TG+F
38 34 37 eqtr3i TE+F=TETG+TG+F
39 25 29 38 3eqtr4i MP+N=TE+F