Metamath Proof Explorer


Theorem numth

Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 10-Feb-1997) (Proof shortened by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypothesis numth.1 AV
Assertion numth xOnff:x1-1 ontoA

Proof

Step Hyp Ref Expression
1 numth.1 AV
2 1 numth2 xOnxA
3 bren xAff:x1-1 ontoA
4 3 rexbii xOnxAxOnff:x1-1 ontoA
5 2 4 mpbi xOnff:x1-1 ontoA