Metamath Proof Explorer


Theorem o1p1e2

Description: 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion o1p1e2 1𝑜+𝑜1𝑜=2𝑜

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 oa1suc 1𝑜On1𝑜+𝑜1𝑜=suc1𝑜
3 1 2 ax-mp 1𝑜+𝑜1𝑜=suc1𝑜
4 df-2o 2𝑜=suc1𝑜
5 3 4 eqtr4i 1𝑜+𝑜1𝑜=2𝑜