Metamath Proof Explorer


Theorem odrngtset

Description: The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
Assertion odrngtset JVJ=TopSetW

Proof

Step Hyp Ref Expression
1 odrngstr.w W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
2 1 odrngstr WStruct112
3 tsetid TopSet=SlotTopSetndx
4 snsstp1 TopSetndxJTopSetndxJndx˙distndxD
5 ssun2 TopSetndxJndx˙distndxDBasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
6 5 1 sseqtrri TopSetndxJndx˙distndxDW
7 4 6 sstri TopSetndxJW
8 2 3 7 strfv JVJ=TopSetW