Metamath Proof Explorer


Theorem odrngstr

Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Hypothesis odrngstr.w W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
Assertion odrngstr WStruct112

Proof

Step Hyp Ref Expression
1 odrngstr.w W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
2 eqid BasendxB+ndx+˙ndx·˙=BasendxB+ndx+˙ndx·˙
3 2 rngstr BasendxB+ndx+˙ndx·˙Struct13
4 9nn 9
5 tsetndx TopSetndx=9
6 9lt10 9<10
7 10nn 10
8 plendx ndx=10
9 1nn0 10
10 0nn0 00
11 2nn 2
12 2pos 0<2
13 9 10 11 12 declt 10<12
14 9 11 decnncl 12
15 dsndx distndx=12
16 4 5 6 7 8 13 14 15 strle3 TopSetndxJndx˙distndxDStruct912
17 3lt9 3<9
18 3 16 17 strleun BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxDStruct112
19 1 18 eqbrtri WStruct112