Metamath Proof Explorer


Theorem oesuc

Description: Ordinal exponentiation with a successor exponent. Definition 8.30 of TakeutiZaring p. 67. Definition 2.6 of Schloeder p. 4. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oesuc AOnBOnA𝑜sucB=A𝑜B𝑜A

Proof

Step Hyp Ref Expression
1 limon LimOn
2 rdgsuc BOnrecxVx𝑜A1𝑜sucB=xVx𝑜ArecxVx𝑜A1𝑜B
3 1 2 oesuclem AOnBOnA𝑜sucB=A𝑜B𝑜A