Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
df-oexp
Next ⟩
df1o2
Metamath Proof Explorer
Ascii
Unicode
Definition
df-oexp
Description:
Define the ordinal exponentiation operation.
(Contributed by
NM
, 30-Dec-2004)
Ref
Expression
Assertion
df-oexp
⊢
↑
𝑜
=
x
∈
On
,
y
∈
On
⟼
if
x
=
∅
1
𝑜
∖
y
rec
⁡
z
∈
V
⟼
z
⋅
𝑜
x
1
𝑜
⁡
y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
coe
class
↑
𝑜
1
vx
setvar
x
2
con0
class
On
3
vy
setvar
y
4
1
cv
setvar
x
5
c0
class
∅
6
4
5
wceq
wff
x
=
∅
7
c1o
class
1
𝑜
8
3
cv
setvar
y
9
7
8
cdif
class
1
𝑜
∖
y
10
vz
setvar
z
11
cvv
class
V
12
10
cv
setvar
z
13
comu
class
⋅
𝑜
14
12
4
13
co
class
z
⋅
𝑜
x
15
10
11
14
cmpt
class
z
∈
V
⟼
z
⋅
𝑜
x
16
15
7
crdg
class
rec
⁡
z
∈
V
⟼
z
⋅
𝑜
x
1
𝑜
17
8
16
cfv
class
rec
⁡
z
∈
V
⟼
z
⋅
𝑜
x
1
𝑜
⁡
y
18
6
9
17
cif
class
if
x
=
∅
1
𝑜
∖
y
rec
⁡
z
∈
V
⟼
z
⋅
𝑜
x
1
𝑜
⁡
y
19
1
3
2
2
18
cmpo
class
x
∈
On
,
y
∈
On
⟼
if
x
=
∅
1
𝑜
∖
y
rec
⁡
z
∈
V
⟼
z
⋅
𝑜
x
1
𝑜
⁡
y
20
0
19
wceq
wff
↑
𝑜
=
x
∈
On
,
y
∈
On
⟼
if
x
=
∅
1
𝑜
∖
y
rec
⁡
z
∈
V
⟼
z
⋅
𝑜
x
1
𝑜
⁡
y