Metamath Proof Explorer


Definition df-oexp

Description: Define the ordinal exponentiation operation. (Contributed by NM, 30-Dec-2004)

Ref Expression
Assertion df-oexp 𝑜=xOn,yOnifx=1𝑜yreczVz𝑜x1𝑜y

Detailed syntax breakdown

Step Hyp Ref Expression
0 coe class𝑜
1 vx setvarx
2 con0 classOn
3 vy setvary
4 1 cv setvarx
5 c0 class
6 4 5 wceq wffx=
7 c1o class1𝑜
8 3 cv setvary
9 7 8 cdif class1𝑜y
10 vz setvarz
11 cvv classV
12 10 cv setvarz
13 comu class𝑜
14 12 4 13 co classz𝑜x
15 10 11 14 cmpt classzVz𝑜x
16 15 7 crdg classreczVz𝑜x1𝑜
17 8 16 cfv classreczVz𝑜x1𝑜y
18 6 9 17 cif classifx=1𝑜yreczVz𝑜x1𝑜y
19 1 3 2 2 18 cmpo classxOn,yOnifx=1𝑜yreczVz𝑜x1𝑜y
20 0 19 wceq wff𝑜=xOn,yOnifx=1𝑜yreczVz𝑜x1𝑜y