Metamath Proof Explorer


Theorem oion

Description: The order type of the well-order R on A is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion oion AVdomFOn

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 1 oicl OrddomF
3 1 oiexg AVFV
4 dmexg FVdomFV
5 elong domFVdomFOnOrddomF
6 3 4 5 3syl AVdomFOnOrddomF
7 2 6 mpbiri AVdomFOn