Metamath Proof Explorer


Theorem omv

Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion omv AOnBOnA𝑜B=recxVx+𝑜AB

Proof

Step Hyp Ref Expression
1 oveq2 y=Ax+𝑜y=x+𝑜A
2 1 mpteq2dv y=AxVx+𝑜y=xVx+𝑜A
3 rdgeq1 xVx+𝑜y=xVx+𝑜ArecxVx+𝑜y=recxVx+𝑜A
4 2 3 syl y=ArecxVx+𝑜y=recxVx+𝑜A
5 4 fveq1d y=ArecxVx+𝑜yz=recxVx+𝑜Az
6 fveq2 z=BrecxVx+𝑜Az=recxVx+𝑜AB
7 df-omul 𝑜=yOn,zOnrecxVx+𝑜yz
8 fvex recxVx+𝑜ABV
9 5 6 7 8 ovmpo AOnBOnA𝑜B=recxVx+𝑜AB