Metamath Proof Explorer


Theorem on0eln0

Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004)

Ref Expression
Assertion on0eln0 AOnAA

Proof

Step Hyp Ref Expression
1 eloni AOnOrdA
2 ord0eln0 OrdAAA
3 1 2 syl AOnAA