Metamath Proof Explorer


Theorem onsucssi

Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 16-Sep-1995)

Ref Expression
Hypotheses onssi.1 AOn
onsucssi.2 BOn
Assertion onsucssi ABsucAB

Proof

Step Hyp Ref Expression
1 onssi.1 AOn
2 onsucssi.2 BOn
3 2 onordi OrdB
4 ordelsuc AOnOrdBABsucAB
5 1 3 4 mp2an ABsucAB