Metamath Proof Explorer


Theorem nlimsucg

Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion nlimsucg AV¬LimsucA

Proof

Step Hyp Ref Expression
1 limord LimsucAOrdsucA
2 ordsuc OrdAOrdsucA
3 1 2 sylibr LimsucAOrdA
4 limuni LimsucAsucA=sucA
5 ordunisuc OrdAsucA=A
6 5 eqeq2d OrdAsucA=sucAsucA=A
7 ordirr OrdA¬AA
8 eleq2 sucA=AAsucAAA
9 8 notbid sucA=A¬AsucA¬AA
10 7 9 syl5ibrcom OrdAsucA=A¬AsucA
11 sucidg AVAsucA
12 11 con3i ¬AsucA¬AV
13 10 12 syl6 OrdAsucA=A¬AV
14 6 13 sylbid OrdAsucA=sucA¬AV
15 3 4 14 sylc LimsucA¬AV
16 15 con2i AV¬LimsucA