Metamath Proof Explorer


Theorem nlimsucg

Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion nlimsucg ( 𝐴𝑉 → ¬ Lim suc 𝐴 )

Proof

Step Hyp Ref Expression
1 limord ( Lim suc 𝐴 → Ord suc 𝐴 )
2 ordsuc ( Ord 𝐴 ↔ Ord suc 𝐴 )
3 1 2 sylibr ( Lim suc 𝐴 → Ord 𝐴 )
4 limuni ( Lim suc 𝐴 → suc 𝐴 = suc 𝐴 )
5 ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )
6 5 eqeq2d ( Ord 𝐴 → ( suc 𝐴 = suc 𝐴 ↔ suc 𝐴 = 𝐴 ) )
7 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
8 eleq2 ( suc 𝐴 = 𝐴 → ( 𝐴 ∈ suc 𝐴𝐴𝐴 ) )
9 8 notbid ( suc 𝐴 = 𝐴 → ( ¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴 ) )
10 7 9 syl5ibrcom ( Ord 𝐴 → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴 ) )
11 sucidg ( 𝐴𝑉𝐴 ∈ suc 𝐴 )
12 11 con3i ( ¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴𝑉 )
13 10 12 syl6 ( Ord 𝐴 → ( suc 𝐴 = 𝐴 → ¬ 𝐴𝑉 ) )
14 6 13 sylbid ( Ord 𝐴 → ( suc 𝐴 = suc 𝐴 → ¬ 𝐴𝑉 ) )
15 3 4 14 sylc ( Lim suc 𝐴 → ¬ 𝐴𝑉 )
16 15 con2i ( 𝐴𝑉 → ¬ Lim suc 𝐴 )