Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
⊢ ( Lim suc 𝐴 → Ord suc 𝐴 ) |
2 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
3 |
1 2
|
sylibr |
⊢ ( Lim suc 𝐴 → Ord 𝐴 ) |
4 |
|
limuni |
⊢ ( Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴 ) |
5 |
|
ordunisuc |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
6 |
5
|
eqeq2d |
⊢ ( Ord 𝐴 → ( suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴 ) ) |
7 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
8 |
|
eleq2 |
⊢ ( suc 𝐴 = 𝐴 → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴 ) ) |
9 |
8
|
notbid |
⊢ ( suc 𝐴 = 𝐴 → ( ¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
10 |
7 9
|
syl5ibrcom |
⊢ ( Ord 𝐴 → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴 ) ) |
11 |
|
sucidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴 ) |
12 |
11
|
con3i |
⊢ ( ¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉 ) |
13 |
10 12
|
syl6 |
⊢ ( Ord 𝐴 → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉 ) ) |
14 |
6 13
|
sylbid |
⊢ ( Ord 𝐴 → ( suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉 ) ) |
15 |
3 4 14
|
sylc |
⊢ ( Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉 ) |
16 |
15
|
con2i |
⊢ ( 𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴 ) |