| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
| 2 |
|
suceq |
⊢ ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 ) |
| 3 |
2
|
unieqd |
⊢ ( 𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴 ) |
| 4 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 5 |
3 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴 ) ) |
| 6 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 7 |
|
ordtr |
⊢ ( Ord 𝑥 → Tr 𝑥 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑥 ∈ On → Tr 𝑥 ) |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
9
|
unisuc |
⊢ ( Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥 ) |
| 11 |
8 10
|
sylib |
⊢ ( 𝑥 ∈ On → ∪ suc 𝑥 = 𝑥 ) |
| 12 |
5 11
|
vtoclga |
⊢ ( 𝐴 ∈ On → ∪ suc 𝐴 = 𝐴 ) |
| 13 |
|
sucon |
⊢ suc On = On |
| 14 |
13
|
unieqi |
⊢ ∪ suc On = ∪ On |
| 15 |
|
unon |
⊢ ∪ On = On |
| 16 |
14 15
|
eqtri |
⊢ ∪ suc On = On |
| 17 |
|
suceq |
⊢ ( 𝐴 = On → suc 𝐴 = suc On ) |
| 18 |
17
|
unieqd |
⊢ ( 𝐴 = On → ∪ suc 𝐴 = ∪ suc On ) |
| 19 |
|
id |
⊢ ( 𝐴 = On → 𝐴 = On ) |
| 20 |
16 18 19
|
3eqtr4a |
⊢ ( 𝐴 = On → ∪ suc 𝐴 = 𝐴 ) |
| 21 |
12 20
|
jaoi |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ∪ suc 𝐴 = 𝐴 ) |
| 22 |
1 21
|
sylbi |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |